
Artificial Intelligence - Methods and

Applications

(5DV122)

Assignment 2

Map maker

Submitted by

Username Group Members

ens15zni Zheyi Ni

mrc15ymi Yongcui Mi

Under the guidance of

Ola Ringdahl

Autumn Semester

2015

Contents

1 Introduction . 1

2 Discussion . 8

Appendix

mapMaker source code

1. main.py . 13

2. input.py . 15

 3. MRDS.py .17

4. mapMake.py . 19

5. getDst.py . 22

6. pathPlan.py . 26

7. pathFollow.py .29

8. vfh.py . 31

9. basic.py . 34

10. visualize.m . 36

11. mapper .38

1

Chapter 1

Introduction

Here, we report our robot “Curiosity” is able to explore autonomously and efficiently

in large-scale environment, as well as mapping accurately. “Curiosity” possesses a

hybrid controller, including frontier based destination decider module, revised A*

algorithm based path planner module, Bayes’s rule based cartographer module, “follow

the carrot” based path follower module and vector field histogram based obstacle

dodger module, who has tremendous application in space, ocean or radioactive

environment exploration.

Our program has eleven files, where mapMake.py, getDst.py, pathPlan.py,

pathFollow.py and vfh.py correspond to the cartographer module, destination decider

module, path planner module, path follower module and obstacle dodger module

respectively; MRDS.py interacts with Microsoft Robotics Developer Studio 4 (MRDS);

basic.py includes some common functions; input.py reads arguments; main.py

combines aforementioned files together; visualize.m visualizes maps in the Matlab and

mapper supply an interface that our program can be called from Linux.

The program takes five arguments: url, 𝑥1, 𝑦1, 𝑥2 and 𝑦2. url specifies the address

and port used to connect to MRDS. url is truncated to remove “http://”. x1, y1, x2 and

y2 give the coordinates of the lower left and upper right corners of the area need to be

explored. We assume that the area always includes the starting position (0, 0).

The program will interact with the robot by making http connections to the locally

running MRDS server. A Robosoft Kompai robot is used in the simulation environment:

Factory.

The achieve funtion save the current map as an image file every 5 seconds.

matplotlib.pyplot is employed to save the image. Note that Putty doesn’t support the

graphical output, hence a non-interactive backend directive matplotlib.use() is called

before importing pyplot to prevent the window appearance of the generated images.

Meanwhile, the program will also save the current map, robot position, path as text file

for further analysis.

The metric map is a discrete, two-dimensional matrix. Each grid cell in a map is

assigned a value that measures the subjective belief of the corresponding region of the

world is occupied, coined mapProb in the program accordingly. Therefore the value is

close to 1, if the grid cell is occupied, and 0 otherwise. The initial value of all grid cells

is 0.5. Occupancy values are determined based on sensor readings. The resolution of a

grid must be fine enough to capture important detail of the world and not too fine to

prevent the complexity of time and space. The resolution of the grid is set to 0.5 in our

program, larger than the length of the robot. Thus the metric map contains the belief as

to whether or not the robot can be moved to that grid cell and represents the

configuration space of the robot projected into the x-y plane.

“Curiosity” is equipped with an array of laser scanners which measures proximity of

2

Figure 1. The architecture of “Curiosity”

nearby objects with high spatial resolution. The array contains 271 laser scanners

evenly distributed from -135 degree to 135 degree with an interval of 1 degree. The

maximum detection distance is 40 meters. If an obstacle is more than 40 meters away

from the robot, the property ‘echoes’ gotten from laser is 40 and the property ‘overflow’

is 1. Besides, “Curiosity” is also equipped with a position sensor which provides

location information of robot. Note that the heading of robot is represented in

quaternion (w, x, y, z). Following formula (1) is used to convert the quaternion to the

Euler angle.

Path Follower
Pose

Pose
Obstacle Dodger

Laser

Sensor
Laser Pose

Actuator
Linear Speed

Angular Speed

Controller

Reactive Layer

Deliberative Layer

Destination

Destination Decider
Pose

Path Planner Pose

Path

Map

Cartographer
Laser

Pose

Map

3

φ = tan−1
2(𝑤 ∗ 𝑧 + 𝑥 ∗ 𝑦)

1 − 2(𝑦2 + 𝑧2)

The laser scanner cannot see through walls. If the robot is going to build a complete

map it has to explore the environment, using its sensors and moving to different

locations, until all areas are covered [2]. The flowchart of “Curiosity” is illustrated in

figure 1.

The sensor will export pose and laser data to the controller.

The controller is a hybrid of deliberative layer and reactive layer. The deliberative layer,

which represents and maintains the knowledge of the world, involves cartographer

module, path planner module and destination decider module. The cartographer module

reads laser and pose and deliver map to destination decider module and path planner

module. The destination decider takes pose and map as input and output the coordinate

of the destination. Then destination, pose and map are imported to the path planner

module and generate a list of coordinates of path.

The reactive layer, which has more concrete responses to the environment and less

knowledge representation and planning, involves the path follower module and obstacle

dodger module.

When there is no obstacles nearby, which is checked by the isVfh function, the path

follower module takes pose and the path transferred from path planner module as input

and sets the linear speed and angular speed. If the distance between robot and obstacle

is less than 2 meters, then the goal direction, pose and laser will be sent to the obstacle

dodger module and let the obstacle dodger algorithm determine a new goal direction

[3].

In the current version of our program, obstacle dodger module is disabled. For the

reason that in the most cases, “Curiosity” strikes the wall because of the unsatisfactory

planned path and inaccurate sensor data. Even though the robot avoids the obstacle,

path follow module will misguide the robot to the obstacle again. Hence, when an

obstacle is near to the “Curiosity”, it will turn back, stop and get a new destination.

A list of unknown grid cells that is going to be detected, called roster, is derived through

getRoster function. Destination decider won’t decide next destination until “Curiosity”

has reached the destination or most of the roster is detected, which is checked by replan

function. Considered the time that destination decider module and path planner module

require, “Curiosity” will stop and wait for the following command.

Destination decider will return a list of destination sorted base on the ascending order

of the cost function value. For the complexity of the topography, sometimes path

planner fails to search a path to the destination. Then next destination will be popped

out until the path is found.

This whole process won’t stop until isEnd function gives a positive signal, who

monitors the progress of the exploration and the number of frontiers.

The actuator executes movement according to linear speed and angular speed.

Exploration strategies has two general approaches: reactive and model based. The most

widely used exploration strategy in reactive robotics is wall following. However, wall

following is a local method and easily get trapped in loops. Model based strategies on

basis of the same underlying idea: go to the least-explored region [2].

4

We take frontier based exploration, a kind of model based strategy. Frontiers are

defined as the grid cell at the boundary of empty and unknown areas, which is an

interesting place for exploration. Due to the great number of frontiers, nearly 4000 grid

cells satisfy the criterion of frontier at beginning, a filter is applied to reduce the number

of frontiers by a factor of 20. This reduction is reasonable since there is no need to keep

massive adjacent grid cells for further calculation and the remaining frontiers could be

seen as the representations of local unknown areas. Frontiers are scored depend on the

cost function, formulated in equation 2, where 𝑘𝑑 , 𝑘𝑠 and 𝑘𝑎 are the significance

coefficients. 𝑑𝑖, 𝑠𝑖 and 𝑎𝑖 are normalized.

𝑣𝑖 = 𝑘𝑑 ∗ 𝑑𝑖 + 𝑘𝑠 ∗ 𝑠𝑖 + 𝑘𝑎 ∗ 𝑎𝑖 (2)

The cost function could be divided into three terms:

The first term is the cost for going to frontier 𝑖, where 𝑑𝑖 is the distance between the

robot and frontier 𝑖.

The second term is the cost for the repeating detection, where 𝑠𝑖 is the negative

number of unknown grid cells the robot can detect when it is at frontier 𝑖. Here we

make three simplification. The first one is that we presume the heading equals to the

orientation of line from the robot to the frontier 𝑖. Since that 𝑠𝑖 is dependent on the

heading of the robot, which will reach its minimum when the heading perpendicular to

tangent line of frontier 𝑖. The second one is that we presume the laser scanner can see

through walls here, the unknown grid behind an obstacle is also taken into account. The

third one is that we presume a subset of the coverage of laser scanner array could reflect

the real number of unknown grid cells. Since that computation of this term is the most

time-consuming module in our program. We reduce 20000 covered grid cells by a

factor of 20.

The third term is the cost for turning to frontier 𝑖, where 𝑎𝑖 is the difference between

the robot heading and the orientation of line from the robot to the frontier 𝑖. We expect

the robot will prefer front frontiers more than back frontiers.

Revised A* algorithm is applied to the path planner module. A* algorithm is an

informed search algorithm, which selects the node to expand next by using an

evaluation function 𝑓(𝑛) shown in equation 3, where 𝑔(𝑛) is the cost of getting to

one node and ℎ(𝑛) is the heuristic evaluation of the node. Here, the heuristic is the

straight line distance between the grid cell and the goal. A* algorithm will find the

shortest path to the goal. However, the shortest path is not the optimal path. We hope

that the path stay away from obstacles. Consequently, a topography term is taken into

account. The evaluation function of the revised version of A* algorithm is the

combination of the 𝑔(𝑛), ℎ(𝑛) and the topography.

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (3)

topoEval function will evaluate the topography neighbor to one grid cell in terms of the

parameter l. For example, if l equals to 2, then the value of 5x5 matrix center on that

grid cell will be summed and normalized. As the value of one grid cell reporting the

probability that the corresponding region is occupied, we try to minimize cost of

topography, as well as the cost of 𝑓(𝑛). Nevertheless, topoEval function seems to has

no effect: planned path tend to close to rather than away from the obstacles.

Thus the blur function is called to keep a safe distance to obstacles and minimize the

5

risk of collisions. The blur function will enlarge the size of obstacles in terms of the

parameter l and return a blurred map. For example, if l equals to 2, then the 5x5 matrix

center on occupied grid cell all will be regarded as occupied. A small l is useless while

a large l will block proper path that can be gone through. l equals to 5 in our program.

The blurred map will be imported to path planner module to obtain a safer path.

Path follower module takes “follow the carrot” algorithm, a straight forward algorithm

for path tracking. The principle of the “follow the carrot” algorithm is that the robot

steers towards a “carrot” at each time step. We keep the linear speed a constant and

change the angular speed according to the “carrot” and the robot position. The angular

speed 𝜔 is determined by equation 4, where k is the gain factor and orientation error

𝜀 is the angle between the robot heading and the line from the robot to the target.

Schematic of the ‘follow the carrot’ algorithm is shown in figure 2. It should be

mentioned that 𝜀 need to be converted to the range from −𝜋 to 𝜋.

𝜔 = 𝑘𝜀 (4)

Carrot point is decided based on the look ahead distance. The robot will tend to

oscillate around the path if the look ahead distance is too small, while ignore the

situation around if the look ahead distance is too large. If the distance between the

robot and the carrot point is below a certain threshold, the nextPoint function will find

another carrot point ahead of the look ahead distance on the path to renew the current

one. Linear speed is set to 3.0, look ahead distance is set to 1.6 and k is set to 1.1 in

our program.

Figure 2. Schematic of the ‘follow the carrot’ algorithm

Obstacles dodger module takes vector field histogram (VFH) method. The first step of

VFH is creating a one-dimensional polar histogram around the robot, resulting in a

number of sectors with obstacles. Obstacles are allocated to sectors according to the

angular resolution 𝛼 and the value of one sector is the distance to the nearest obstacle

in that sector. A sector is thought to be empty if whose value larger than a certain

threshold.

The next step is selecting the steering angle. Candidate valley could be single empty

sector or consecutive empty sectors, representing a free space where the robot may pass.

The goal valley is chosen with the lowest value of the cost function formulated in

equation 5, where 𝑘𝑠 , 𝑘𝑎 and 𝑘𝑡 are the significance coefficients. 𝑠𝑖 , 𝑎𝑖 and 𝑡𝑖

are normalized.

𝑔𝑖 = 𝑘𝑠 ∗ 𝑠𝑖 + 𝑘𝑎 ∗ 𝑎𝑖 + 𝑘𝑡 ∗ 𝑡𝑖 (5)

The cost function could be divided into three terms:

The first term is the cost for the risk going at the candidate direction, where 𝑠𝑖 is the

negative number of empty sectors in the candidate valley.

The second term is the cost for turning to the candidate direction, where 𝑎𝑖 is the

difference between the candidate direction and the orientation of the robot.

6

The last term is the cost for turning to the target direction, where 𝑡𝑖 is the difference

between the candidate direction and the target direction [3].

Cartographer module takes charge of building sensor model, which connects sensing

and perception. The sensor model mainly focus on two problems: interpretation and

integration of the sensor readings. Interpretation means mapping sensor readings to

occupancy values and integration means integrating multiple sensor interpretations

over time to yield a single combined estimation of occupancy.

The role of mapUpdate function is mapping the sensor readings from continuous world

to the metric map and updating mapFreq. mapFreq records the times a grid cell is

detected as empty or occupied. If the property ‘overflow’ of one laser is 1, then all the

grid cells the laser passing through are empty. Otherwise, except for the grid cell located

at the end of the laser beam is occupied, other grid cells are empty. getLine function

will return a list of grid cells the laser passing through when informed of the start point

and end point of the laser beam.

The role of integrate function is interpreting and integrating the sensor readings, namely

calculating mapProb according to mapFreq by the evidential method Bayes’s rule. The

sensor reading at time t is denoted as 𝑠(𝑇) and the probability that a grid cell (x, y) is

occupied conditioned on the sensor reading 𝑠(𝑇) is denoted as 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(𝑇)) .

Therefore 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2),⋯ , 𝑠(𝑇)), which is condition on all sensor readings, can

be computed as equation 6.

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇)) = 1 −

(

 1

1 + ∏
𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠

(𝜏))

1 − 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(𝜏))

𝑇
𝜏=1

)

For the ignorance of the accuracy of the laser scanners, we suppose that the probability

that a grid cell (x, y) is occupied conditioned on the sensor reading is occupied is set to

0.9 and the probability that a grid cell (x, y) is empty conditioned on the sensor reading

is empty is also set to 0.9.

The derivation of equation 6 follows directly from Bayes’s rule and the conditional

independence assumption. According to Bayes’s rule,

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇))

=
𝑃𝑟𝑜𝑏(𝑠(𝑇)|𝑜𝑐𝑐𝑥,𝑦, 𝑠

(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

𝑃𝑟𝑜𝑏(𝑠(𝑇)|¬𝑜𝑐𝑐𝑥,𝑦, 𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

which can be simplified by virtue of the conditional independence assumption to

=
𝑃𝑟𝑜𝑏(𝑠(𝑇)|𝑜𝑐𝑐𝑥,𝑦)

𝑃𝑟𝑜𝑏(𝑠(𝑇)|¬𝑜𝑐𝑐𝑥,𝑦)

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

Applying Bayes’s rule to the first term leads to

=
𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠

(𝑇))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦|𝑠
(𝑇))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦)

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦)

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

7

Induction over T yields:

=
𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦)

1 − 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦)
∏

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(𝜏))

1 − 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(𝜏))

𝑇

𝜏=1

1 − 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦)

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦)

Here 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦) denotes the prior probability for occupancy, which, if set to 0.5, can

be omitted in the equation.

8

Chapter 2

Discussion

Although grid-based method produce accurate metric maps, its complexity often prohibits

efficient planning in large-scale environments. The getDst function and pathPlan function

take most of the time in our program.

Due to the lack of the display of planning path in the Microsoft Visual Simulation

Environment (MVSE), we are inaccessible to the flaws in our program. Therefore, we

invoke achieve function every several seconds to append current map, path and robot

position to the corresponding list. The lists will be saved as text files after simulation and

pre-processed before loaded into Matlab. Then, getframe function is called to get frames

from the superimposition of time lapse map, path and robot position. Movie function is

called to play recorded movie frames. Movie 1 in the supplementary material shows the

perfect path following performance under the sampling interval is 1 second. Movie 2 in the

supplementary material shows rational destination decision and path planning, as well as

perfect path following under the sampling interval is 5 seconds. We notice that the robot

start to oscillate around the path in the later stage of exploration and this phenomenon

disappears when the achieve function is not called. Thus we guess that the large volume

of saving files damper the speed of computation.

Through video we find some interesting details:

One is that the boundaries of obstacles is highly variable. Specifically, previous occupied

grid cells will become empty and their empty neighbors will become occupied, or empty

grid cells near an occupied grid cell will become occupied. Except for the noise of the

sensors, discretization is also a contributing factor for this variability. Even small deviation

in the continuous world will cause appreciable difference in the discrete grid map. For

example, -49.501 is divided into grid 0 and -49.499 is divided into grid 1 in our case.

Another interesting detail is that when the robot collide with an obstacle, the laser scanners

will be influenced and generate “ghost grids” on the map. The ghost grid is the grid cell

who is empty while considering it is occupied on the map. The ghost grid could be

eliminated through repeating detection.

Figure 3 shows the map of assigned square in the factory environment constructed by

robot “Curiosity” under the input 𝑥1 = −50, 𝑦1 = −50, 𝑥2 = 50 and 𝑦2 = 50. Figure 4

shows the visual and physics rendering of the factory environment screenshotted from

the MVSE. Although two figures are extremely identical, still some problems could be

found in our map. Problems, labeled in figure 3, could be classified into three categories,

which indicate the defect of our sensor model.

The first problem is the absent street lights. We suspect that the small sectional area of

street light can’t guarantee it can be detected by laser scanners every time. To check

whether “Curiosity” detect the street lights, we visualize the frequency of every grid cell

detected as occupied and empty. As shown in figure 5, the upper left and right panels are

the frequency map of occupied or empty signal detected respectively. The value of each

9

Figure 3. The map of assigned square in the factory environment constructed by robot

“Curiosity” under the input 𝑥1 = −50, 𝑦1 = −50, 𝑥2 = 50 and 𝑦2 = 50. The circled

number labels where the problem is.

Figure 4. The rendering of the factory environment

(left panel) The visual rendering of the factory environment. (right panel) The physics

rendering of the factory environment.

3

1

2

10

Figure 5. The frequency map. (upper left panel) The frequency map of occupied signal

detected. (upper right panel) The frequency map of empty signal detected. (lower left

panel) The normalized frequency map of occupied signal detected. (lower right panel)

The normalized frequency map of empty signal detected.

grid cell is the times this grid cell detected as occupied or empty. The lower left and right

panels are the normalized frequency map of occupied or empty signal detected

respectively. The value of each grid cell is the normalized frequency this grid cell

detected as occupied or empty. Apart from the frequency map of empty signal detected,

the other three frequency maps all sketch the outline of obstacles, especially the missing

street lights. Therefore, the grid cells where street lights locate are detected more times

as empty, which covers the times detected as occupied.

The second problem is the inscrutable wall passing, which is also observed in the video.

11

Figure 6. The maps constructed by “Curiosity” under different inputs. (left panel) The map

constructed under the input 𝑥1 = −42, 𝑦1 = −39, 𝑥2 = 17 and 𝑦2 = 36. (right panel)

The map constructed under the input 𝑥1 = −12, 𝑦1 = −15, 𝑥2 = 5 and 𝑦2 = 8.

This may ascribed to the noise of sensors and the complexity of topography. The only

one wall passing example we figure out happens at the entrance of the plant located in

the center of the map. There is a threshold at the entrance and a slope in front of the

entrance. Robot won’t detect anything behind the slope until it drives across the

threshold.

The third problem is the missing boundaries. There should be a wall in the place where

the label is. Unlike the absent street lights in the first problem, the wall is easily detected.

This problem is relevant to the aforementioned variability of the boundaries of obstacles.

Indeed, we can find these missing boundaries in four frequency maps.

In conclusion, the above three problems instruct us to reduce the probability that a grid

cell is empty conditioned on when sensor reading is empty.

Figure 5 also reveals that the grid cells in the center of the map are more detected than

the peripheral grid cells. Besides, there is a hot spot near the entrance of the plant

located in the center of the map because of the high centrality of that node in the

geographical network.

Next, we test whether the controller can guide “Curiosity” around any given square area.

As shown in figure 6, “Curiosity” constructs two maps under different inputs. Both maps

are similar to the visual and physics rendering of the factory environment shown in figure

3. Movie 3 in the supplementary material shows the process “Curiosity” explores the map

under the input 𝑥1 = −12, 𝑦1 = −15, 𝑥2 = 5 and 𝑦2 = 8.

We try to create some index to evaluate the performance of exploration. The first index is

the time spent on exploration. The average exploration time of our program is about 150

seconds with the linear speed 3.0.

Another index is the efficiency of exploration, which is define as the ratio between the

path length taken by the omniscience and the path length taken by the robot. An

intelligent agent would try to shorten the exploration path and avoid passing explored

12

region. Due to the dense equipment of the laser scanners, the grid cells close to the

robot are more detected. Therefore, we can discern the trajectory of the robot from the

frequency map of empty signal detected or the general frequency map. The trajectory

implicates that our robot takes a relatively efficient strategy.

Other exploration methods, such as the value iteration algorithm, also have excellent

performance. The basic idea of value iteration algorithm is that the algorithm updates the

value of all explored grid cells by the value of their best neighbors, plus the costs of

moving to this neighbor. Each value measures cumulative cost for moving to the nearest

unexplored cell. Once value iteration converges, greedy exploration simply amounts to

steepest descent in the value function [1].

From figure 3 we could see that not all unknown grid cells could be detected. Take the

plant located in the upper left corner of the map as an instance, there is no entrance to

that plant. Now, the program will end at the 77% of completion, actually it is the maximum

the robot can detect. Hence an new function is required to help isEnd function judging the

completion of the exploration: If a terrain is surrounded by obstacles, it would be

regarded as obstacle either.

Reference

[1] Thrun S. (1998). Learning maps for indoor mobile robot navigation. Artificial Intelligence,

99(1):21-71.

[2] Romero L. et al.(2001). An exploration and navigation approach for indoor mobile robots

considering sensor’s perceptual limitations. Proceedings - IEEE International Conference

on Robotics and Automation 2001(3):3092-3097.

[3] Ringdahl O. (2003). Path tracking and obstacle avoidance algorithms for autonomous

forest machines.

11

Appendix

1. main.py

from time import sleep

from math import atan2

from threading import Thread

import matplotlib

matplotlib.use('Agg')

from matplotlib import pyplot

from basic import size, save, distance

from input import row, col, gridizeX, gridizeY

from pathPlan import pathPlan

from pathFollow import pathFollow, nextPoint

from getDst import getDst, getRoster, replan

from mapMake import mapUpdate, integration, gro

from MRDS import getPose, getLaser, postSpeed

from vfh import vfh

def archive():

 global mapProb

 sampleInterval = 5

while not end:

 plt.imshow(mapProb)

 plt.savefig('map.jpg')

 sleep(sampleInterval)

def isVfh(front):

 for i in range(len(front)):

 if front[i] < 1.0:

 return True

 return False

def isEnd(mapFreq):

 global end

 row, col = size(mapFreq)

 detected = 0.0

 end = False

 for i in range(row):

 for j in range(col):

12

 if mapFreq[i][j][2] > 0:

 detected = detected + 1

 progress = detected / (row * col)

 if progress > 0.75:

 end = True

 return end

def main():

 global mapFreq, mapProb, count, path, gridRobotX, gridRobotY, end

 pose = getPose()

 x = pose['Pose']['Position']['X']

 y = pose['Pose']['Position']['Y']

 gridRobotX = gridizeX(x)

 gridRobotY = gridizeY(y)

 laser = getLaser()

 mapFreq = mapUpdate(pose, laser, mapFreq)

 blurMapFreq = gro(mapFreq)

 mapProb = integration(mapFreq)

 candidate = getDst(pose, mapFreq)

 while len(path) == 0:

 dst = candidate.pop()

 roster = getRoster(pose, dst, mapFreq)

 path = pathPlan([gridRobotX, gridRobotY], dst, blurMapFreq)

 target = nextPoint(x, y, path, 0)

 while True:

 pose = getPose()

 x = pose['Pose']['Position']['X']

 y = pose['Pose']['Position']['Y']

 gridRobotX = gridizeX(x)

 gridRobotY = gridizeY(y)

 laser = getLaser()

 front = laser['Echoes'][130 : 140]

 end = isEnd(mapFreq)

 if end:

 break;

 if replan(roster, mapFreq) or distance(x, y, path[-1][0], path[-1][1]) < 1:

 path = []

 response = postSpeed(0, 0)

 for i in range(20):

 candidate = getDst(pose, mapFreq)

13

 while len(path) == 0:

 dst = candidate.pop()

 roster = getRoster(pose, dst, mapFreq)

 path = pathPlan([gridRobotX, gridRobotY], dst, blurMapFreq)

 target = nextPoint(x, y, path, 0)

 if len(path) != 0:

 break

 mapFreq = mapUpdate(pose, laser, mapFreq)

 blurMapFreq = gro(mapFreq)

 mapProb = integration(mapFreq)

 if isVfh(front):

 psi = atan2(path[target][1] - y, path[target][0] - x)

 # vfh(pose, laser, psi)

 response = postSpeed(0, 0)

 sleep(0.5)

 response = postSpeed(0, -1.0)

 sleep(3)

 path = []

 response = postSpeed(0, 0)

 for i in range(20):

 candidate = getDst(pose, mapFreq)

 while len(path) == 0:

 dst = candidate.pop()

 roster = getRoster(pose, dst, mapFreq)

 path = pathPlan([gridRobotX, gridRobotY], dst, blurMapFreq)

 target = nextPoint(x, y, path, 0)

 if len(path) != 0:

 break

 else:

 target = pathFollow(path, pose, target)

 count += 1

[numOccupied, numEmpty, total]

mapFreq = [[[0 for i in range(3)] for j in range(row)] for k in range(col)]

mapProb = [[0.5 for i in range(row)] for j in range(col)]

mapTimeLapse = []

robotPosTimeLapse = []

pathTimeLapse = []

pathLength = []

count = 1

pose = getPose()

x = pose['Pose']['Position']['X']

y = pose['Pose']['Position']['Y']

gridRobotX = gridizeX(x)

14

gridRobotY = gridizeY(y)

path = []

gridPath = []

end = False

threads = list()

t1 = Thread(target = archive)

threads.append(t1)

for t in threads:

 t.setDaemon(True)

 t.start()

try:

 main()

except:

 pass

15

2. input.py

from sys import argv

from math import floor, ceil

def getInput():

 if(len(argv) != 6):

 print("Invalid Number of Arguments")

 print("Format: url, x1, y1, x2, y2 give the coordinates of the lower left and

upper right corners of the area the robot should explore and map.")

 exit(1)

 MRDS_URL = argv[1]

 x1 = argv[2]

 y1 = argv[3]

 x2 = argv[4]

 y2 = argv[5]

 if(x1 >= x2) or (y1 >= y2):

 print("Invalid Meaning of Arguments")

 print("Format: url, x1, y1, x2, y2 give the coordinates of the lower left and

upper right corners of the area the robot should explore and map.")

 exit(1)

 return MRDS_URL, x1, y1, x2, y2

def floorGrid(c):

 global gridResolution

 cFloored = floor(c / gridResolution) * gridResolution

 return cFloored

def ceilGrid(c):

 global gridResolution

 cCeiled = ceil(c / gridResolution) * gridResolution

 return cCeiled

def gridizeX(x):

 global x0, gridResolution

 gridX = int((floorGrid(x) - x0) / gridResolution)

 return gridX

def gridizeY(y):

 global y0, gridResolution

 gridY = int((floorGrid(y) - y0) / gridResolution)

 return gridY

16

def metrizeX(x):

 global x0, gridResolution

 metricX = x * gridResolution + x0 + gridResolution / 2

 return metricX

def metrizeY(y):

 global y0, gridResolution

 metricY = y * gridResolution + y0 + gridResolution / 2

 return metricY

gridResolution = 0.5

MRDS_URL, lowerLeftX, lowerLeftY, upperRightX, upperRightY = getInput()

MRDS_URL = MRDS_URL.replace('http://', '')

x0 = floorGrid(float(lowerLeftX))

y0 = floorGrid(float(lowerLeftY))

xn = ceilGrid(float(upperRightX))

yn = ceilGrid(float(upperRightY))

row = int((yn - y0) / gridResolution)

col = int((xn - x0) / gridResolution)

17

3. MRDS.py

import httplib, json

from input import MRDS_URL

MRDS_URL = 'localhost:50000'

HEADERS = {"Content-type": "application/json", "Accept": "text/json"}

class UnexpectedResponse(Exception): pass

def postSpeed(angularSpeed,linearSpeed):

 """Sends a speed command to the MRDS server"""

 mrds = httplib.HTTPConnection(MRDS_URL)

 params =

json.dumps({'TargetAngularSpeed':angularSpeed,'TargetLinearSpeed':linearSpeed})

 mrds.request('POST','/lokarria/differentialdrive',params,HEADERS)

 response = mrds.getresponse()

 status = response.status

 #response.close()

 if status == 204:

 return response

 else:

 raise UnexpectedResponse(response)

def getLaser():

 """Requests the current laser scan from the MRDS server and parses it into a dict"""

 mrds = httplib.HTTPConnection(MRDS_URL)

 mrds.request('GET','/lokarria/laser/echoes')

 response = mrds.getresponse()

 if (response.status == 200):

 laserData = response.read()

 response.close()

 return json.loads(laserData)

 else:

 return response

def getLaserAngles():

 """Requests the current laser properties from the MRDS server and parses it into a

dict"""

 mrds = httplib.HTTPConnection(MRDS_URL)

 mrds.request('GET', '/lokarria/laser/properties')

 response = mrds.getresponse()

 if (response.status == 200):

18

 laserData = response.read()

 response.close()

 properties = json.loads(laserData)

 beamCount = int((properties['EndAngle'] - properties['StartAngle']) /

properties['AngleIncrement'] + 1)

 a = properties['StartAngle'] + properties['AngleIncrement']

 angles = []

 for i in range(beamCount):

 angles.append(a)

 a += properties['AngleIncrement']

 return angles

 else:

 raise UnexpectedResponse(response)

def getPose():

 """Reads the current position and orientation from the MRDS"""

 mrds = httplib.HTTPConnection(MRDS_URL)

 mrds.request('GET', '/lokarria/localization')

 response = mrds.getresponse()

 if (response.status == 200):

 poseData = response.read()

 response.close()

 return json.loads(poseData)

 else:

 return UnexpectedResponse(response)

19

4. mapMake.py

from math import sin, cos, floor

from copy import deepcopy

from basic import size, sign, quaternion2Euler

from input import gridizeX, gridizeY, row, col

from MRDS import getLaserAngles

laserAngles = getLaserAngles()

def mapUpdate(pose, laser, mapFreq):

 global laserAngles

 row, col = size(mapFreq)

 robotX = pose['Pose']['Position']['X']

 robotY = pose['Pose']['Position']['Y']

 gridRobotX = gridizeX(robotX)

 gridRobotY = gridizeY(robotY)

 robotOri = quaternion2Euler(pose)

 laserEchoes = laser['Echoes']

 laserOverflow = laser['Overflow']

 mapFreq[gridRobotX][gridRobotY][1] += 1

 for i in range(len(laserEchoes)):

 frontierX = robotX + laserEchoes[i] * cos(robotOri + laserAngles[i])

 gridFrontierX = gridizeX(frontierX)

 frontierY = robotY + laserEchoes[i] * sin(robotOri + laserAngles[i])

 gridFrontierY = gridizeY(frontierY)

 if (gridFrontierX < row) and (gridFrontierX >= 0) and (gridFrontierY < col) and

(gridFrontierY >= 0):

 if laserOverflow[i]:

 mapFreq[gridFrontierX][gridFrontierY][1] += 1

 else:

 mapFreq[gridFrontierX][gridFrontierY][0] += 1

 line = getLine([gridRobotX, gridRobotY], [gridFrontierX, gridFrontierY],

mapFreq)

 for i in range(len(line)):

 mapFreq[line[i][0]][line[i][1]][1] += 1

 for i in range(row):

 for j in range(col):

 mapFreq[i][j][2] = mapFreq[i][j][0] + mapFreq[i][j][1]

20

 return mapFreq

def getLine(startPoint, endPoint, mapFreq):

 startPointX = startPoint[0]

 startPointY = startPoint[1]

 endPointX = endPoint[0]

 endPointY = endPoint[1]

 row, col = size(mapFreq)

 line = []

 if abs(endPointX - startPointX) == 0 :

 numGridInside = int(abs(endPointY - startPointY) - 1)

 gridInsideX = startPointX

 gridInsideY = startPointY

 for j in range(numGridInside):

 gridInsideY = gridInsideY + sign(endPointY - startPointY) * 1

 if (gridInsideY >= 0) and (gridInsideY < col):

 line.append([gridInsideX, gridInsideY])

 else:

 k = float(endPointY - startPointY) / float(endPointX - startPointX)

 if abs(k) < 1:

 numGridInside = int(abs(endPointX - startPointX) - 1)

 gridInsideX = startPointX

 temp = float(startPointY)

 for j in range(numGridInside):

 gridInsideX = gridInsideX + sign(endPointX - startPointX) * 1

 temp = temp + sign(endPointY - startPointY) * abs(k)

 gridInsideY = int(floor(temp))

 if (gridInsideY >= 0) and (gridInsideY < col) and (gridInsideX >= 0) and

(gridInsideX < row):

 line.append([gridInsideX, gridInsideY])

 else:

 numGridInside = int(abs(endPointY - startPointY) - 1)

 temp = float(startPointX)

 gridInsideY = startPointY

 for j in range(numGridInside):

 temp = temp + sign(endPointX - startPointX) * abs(1 / k)

 gridInsideX = int(floor(temp))

 gridInsideY = gridInsideY + sign(endPointY - startPointY) * 1

 if (gridInsideY >= 0) and (gridInsideY < col) and (gridInsideX >= 0) and

(gridInsideX < row):

 line.append([gridInsideX, gridInsideY])

21

 return line

def integration(mapFreq):

 row, col = size(mapFreq)

 mapProb = [[0.5 for i in range(col)] for j in range(row)]

 for i in range(row):

 for j in range(col):

 diff = mapFreq[i][j][0] - mapFreq[i][j][1]

 if abs(diff) > 7:

 diff = sign(mapFreq[i][j][0] - mapFreq[i][j][1]) * 7

 product = pow(9, diff)

 mapProb[i][j] = 1 - 1.0 / (1 + product)

 return mapProb

def gro(mapFreq):

 row, col = size(mapFreq)

 close = [[0 for i in range(col)] for j in range(row)]

 blurMapFreq = deepcopy(mapFreq)

 for i in range(row):

 for j in range(col):

 if mapFreq[i][j][0] - mapFreq[i][j][1] > 0 and close[i][j] == 0:

 neighbour = getNeighbour(mapFreq, i, j, 5)

 for k in range(len(neighbour)):

 if mapFreq[neighbour[k][0]][neighbour[k][1]][0] == 0:

 if close[neighbour[k][0]][neighbour[k][1]] == 0:

 close[neighbour[k][0]][neighbour[k][1]] = 1

 blurMapFreq[neighbour[k][0]][neighbour[k][1]][0] += 50

 else:

 blurMapFreq[neighbour[k][0]][neighbour[k][1]][0] += 50

 return blurMapFreq

def getNeighbour(map, i, j, a):

 row, col = size(map)

 neighbour = []

 for u in range(-a, a + 1):

 for v in range(-a, a + 1):

 if (i + u >= 0) and (i + u < row) and (j + v >= 0) and (j + v < col):

 neighbour.append([i + u, j + v])

 return neighbour

22

5. getDst.py

from math import sin, cos, atan2, exp, floor

from basic import size, sign, distance, filter, indexMaxLs, quaternion2Euler

from input import gridizeX, gridizeY, row, col

from MRDS import getLaserAngles

from mapMake import getLine

laserMaxRange = 40

laserAngles = getLaserAngles()

def getRoster(pose, dst, mapFreq):

 row, col = size(mapFreq)

 roster = []

 gridRobotX = gridizeX(pose['Pose']['Position']['X'])

 gridRobotY = gridizeY(pose['Pose']['Position']['Y'])

 frontierOri = atan2(dst[1] - gridRobotY, dst[0] - gridRobotX)

 cover = getCover(frontierOri, mapFreq)

 for i in range(len(cover)):

 x = dst[0] + cover[i][0]

 y = dst[1] + cover[i][1]

 if (x >= 0) and (x < row) and (y >= 0) and (y < col):

 if mapFreq[x][y][2] == 0:

 roster.append([x, y])

 return roster

def replan(roster, mapFreq):

 progress = 0.0

 for i in range(len(roster)):

 if mapFreq[roster[i][0]][roster[i][1]][2] > 0:

 progress += 1

 progress = progress / len(roster)

 if progress > 0.90:

 return True

 return False

def getCover(frontierOri, mapFreq):

 global laserAngles, laserMaxRange

 row, col = size(mapFreq)

 cover = []

 robotX = 0

 robotY = 0

23

 gridRobotX = gridizeX(robotX)

 gridRobotY = gridizeY(robotY)

 cover.append([gridRobotX - gridRobotX, gridRobotY - gridRobotY])

 for i in range(len(laserAngles)):

 gridFrontierX = gridizeX(robotX + laserMaxRange * cos(frontierOri +

laserAngles[i]))

 gridFrontierY = gridizeY(robotY + laserMaxRange * sin(frontierOri +

laserAngles[i]))

 if (gridFrontierX <= row) and (gridFrontierX >= 0) and (gridFrontierY <= col)

and (gridFrontierY >= 0):

 cover.append([gridFrontierX - gridRobotX, gridFrontierY - gridRobotY])

 line = getLine([gridRobotX, gridRobotY], [gridFrontierX, gridFrontierY],

mapFreq)

 for i in range(len(line)):

 cover.append([line[i][0] - gridRobotX, line[i][1] - gridRobotY])

 return cover

def isUndetectedAround(mapFreq, i, j, a):

 row, col = size(mapFreq)

 for u in range(-a, a + 1):

 for v in range(-a, a + 1):

 if (i + u >= 0) and (i + u < row) and (j + v >= 0) and (j + v < col):

 if mapFreq[i + u][j + v][2] == 0:

 return True

 return False

def isObstacleNear(mapFreq, i, j, a):

 row, col = size(mapFreq)

 for u in range(-a, a + 1):

 for v in range(-a, a + 1):

 if (i + u >= 0) and (i + u < row) and (j + v >= 0) and (j + v < col):

 if mapFreq[i + u][j + v][0] > 0:

 return True

 return False

def getFrontier(mapFreq):

 row, col = size(mapFreq)

 frontier = []

 for i in range(row):

 for j in range(col):

 if mapFreq[i][j][1] - mapFreq[i][j][0] > 0:

 if isUndetectedAround(mapFreq, i, j, 3):

24

 if not isObstacleNear(mapFreq, i, j, 4):

 frontier.append([i, j])

 return frontier

def getDst(pose, mapFreq):

 row, col = size(mapFreq)

 gridRobotX = gridizeX(pose['Pose']['Position']['X'])

 gridRobotY = gridizeY(pose['Pose']['Position']['Y'])

 robotOri = quaternion2Euler(pose)

 frontier = getFrontier(mapFreq)

 frontier = filter(frontier, 20)

 d = [1 for i in range(len(frontier))]

 s = [0 for i in range(len(frontier))]

 a = [1 for i in range(len(frontier))]

 v = [1 for i in range(len(frontier))]

 for i in range(len(frontier)):

 dis = distance(gridRobotX, gridRobotY, frontier[i][0], frontier[i][1])

 d[i] = abs(dis - 30)

 frontierOri = atan2(frontier[i][1] - gridRobotY, frontier[i][0] - gridRobotX)

 a[i] = abs(frontierOri - robotOri)

 cover = getCover(frontierOri, mapFreq)

 cover = filter(cover, 10)

 for j in range(len(cover)):

 x = frontier[i][0] + cover[j][0]

 y = frontier[i][1] + cover[j][1]

 if (x >= 0) and (x < row) and (y >= 0) and (y < col):

 if mapFreq[x][y][2] == 0:

 s[i] += 1

 maxD = max(d)

 maxA = max(a)

 maxS = max(s)

 for i in range(len(frontier)):

 d[i] = 1 - d[i] / maxD

 a[i] = 1 - a[i] / maxA

 s[i] = s[i] / maxS

 pa = 0.1

 pd = 0.5

 ps = 0.4

25

 for i in range(len(v)):

 v[i] = pa * a[i] + pd * d[i] + ps * s[i]

 if len(v) > 50:

 indexMax = indexMaxLs(v, 50)

 else:

 indexMax = indexMaxLs(v, len(v))

 dst = []

 for i in range(len(indexMax)):

 dst.append(frontier[indexMax[i]])

 dst.reverse()

 return dst

26

6. pathPlan.py

from basic import size

from input import metrizeX, metrizeY

avoidD = 5

def topoEvaluate(x, y, map, a):

 row, col = size(map)

 local = 0

 for i in range(-a, a + 1):

 for j in range(-a, a + 1):

 if (x + i >= 0) and (x + i < row) and (y + j >= 0) and (y + j < col):

 if map[x + i][y + j][0] > 0:

 local += 1

 s = local / pow(a, 2)

 return s

def pathPlan(init, goal, map):

 row, col = size(map)

 path = []

 cost = 1

 delta = [[-1, 0], # go up

 [0, -1], # go left

 [1, 0], # go down

 [0, 1], # go right

 [-1, -1], # go upleft

 [-1, 1], # go upright

 [1, -1], # go downleft

 [1, 1]] # go downright

 closed = [[0 for i in range(col)] for j in range(row)]

 closed[init[0]][init[1]] = 1

 expand = [[-1 for i in range(col)] for j in range(row)]

 expand[init[0]][init[1]] = 0

 action = [[-1 for i in range(col)] for j in range(row)]

 x = init[0]

 y = init[1]

 g = 0

 h = abs(goal[0] - init[0]) + abs(goal[1] - init[1])

27

 f = g + h + 50 * topoEvaluate(x, y, map, avoidD)

 open = [[f, g, h, x, y]]

 found = False # flag that is set when search complete

 resign = False # flag set if we can't find expand

 count = 1

 while found is False and resign is False:

 # check if we still have elements on the open list

 if len(open) == 0:

 resign = True

 return path

 # remove node from list

 else:

 open.sort()

 open.reverse()

 next = open.pop()

 x = next[3]

 y = next[4]

 g = next[1]

 expand[x][y] = count

 count += 1

 # check if we are done

 if x == goal[0] and y == goal[1]:

 found = True

 # expand winning element and add to new open list

 else:

 for i in range(len(delta)):

 x2 = x + delta[i][0]

 y2 = y + delta[i][1]

 if x2 >= 0 and x2 < row and y2 >= 0 and y2 < col:

 if closed[x2][y2] == 0 and map[x2][y2][1] - map[x2][y2][0] > 1:

 g2 = g + cost

 h2 = abs(goal[0] - x2) + abs(goal[1] - y2)

 f2 = g2 + h2 + 50 * topoEvaluate(x2, y2, map, avoidD)

 open.append([f2, g2, h2, x2, y2])

 closed[x2][y2] = 1

 action[x2][y2] = i

28

 x = goal[0]

 y = goal[1]

 while x != init[0] or y != init[1]:

 x2 = x - delta[action[x][y]][0]

 y2 = y - delta[action[x][y]][1]

 path.append([metrizeX(x2), metrizeY(y2)])

 x = x2

 y = y2

 path.reverse()

return path

29

7. pathFollow.py

from time import sleep

from sys import maxint

from math import pi, atan2, sin, cos

from MRDS import getPose, postSpeed

from basic import quaternion2Euler, distance

lookAheadD = 1.6

k = 1.1

tolerance = 1.2

epsilon = 0.4

linearSpeed = 3.0

def nextPoint(x, y, path, lastPoint):

 global lookAheadD

 point = -1

 temp = maxint

 for i in range(lastPoint, len(path)):

 d = distance(x, y, path[i][0], path[i][1])

 if (d > lookAheadD) and (d < temp):

 point = i

 temp = d

 if point == -1:

 point = len(path) - 1

 return point

''' Follow The Carrot '''

def pathFollow(path, pose, target):

 global k, tolerance, epsilon

 x = pose['Pose']['Position']['X']

 y = pose['Pose']['Position']['Y']

 ori = quaternion2Euler(pose)

 psi = atan2(path[target][1] - y, path[target][0] - x)

 deltaOri = psi - ori

 if deltaOri > pi:

 deltaOri = deltaOri - 2 * pi

 if deltaOri < -pi:

 deltaOri = deltaOri + 2 * pi

 angularSpeed = k * deltaOri

30

 response = postSpeed(angularSpeed, linearSpeed)

 d = distance(x, y, path[target][0], path[target][1])

 if (d > tolerance) or (d < epsilon):

 i = nextPoint(x, y, path, target)

 else:

 i = target

return i

31

8. vfh.py

from MRDS import getLaserAngles, getPose, postSpeed

from basic import quaternion2Euler, indexMin

from math import ceil, pi

from time import sleep

laserAngles = getLaserAngles()

angularRes = 5

k = 1.2

linearSpeed = 0.8

def getRuns(ls):

 start = []

 end = []

 i = 0

 length = len(ls)

 while i < length:

 try:

 i += ls[i :].index(0)

 start.append(i)

 try:

 i += ls[i :].index(1)

 except ValueError:

 i = length

 end.append(i - 1)

 i += 1

 except ValueError:

 break

 return start, end

def sectorize(angle):

 global angularRes

 cAngle = ceil(angle / angularRes) * angularRes

 sector = int((cAngle - (-90)) / angularRes)

 return sector

def angularize(sector):

 global angularRes

 angular = (sector * angularRes + (-90) + angularRes / 2) / 180 * pi

 return angular

def vfh(pose, laser, psi):

 global laserAngles, angularRes, k, linearSpeed

32

 robotOri = quaternion2Euler(pose)

 if robotOri < -pi / 2:

 robotOri += pi

 if robotOri > pi / 2:

 robotOri -= pi

 sectorOri = sectorize(robotOri)

 if psi < -pi / 2:

 psi += pi

 if psi > pi / 2:

 psi -= pi

 sectorTarget = sectorize(psi)

 laserEchoes = laser['Echoes']

 vfhAngles = laserAngles[45 : 224]

 vfhEchoes = laserEchoes[45 : 224]

 numSector = len(vfhAngles) / angularRes

 # Polar Obstacle Density

 bw = [0 for i in range(numSector)]

 for i in range(numSector):

 temp = min(vfhEchoes[angularRes * i : angularRes * (i + 1) - 1])

 if temp < 5:

 bw[i] = 1

 start, end = getRuns(bw)

 if len(start) == 0:

 response = postSpeed(0, -0.8)

 sleep(5)

 else:

 run = [0 for i in range(len(start))]

 deltaTarget = [0 for i in range(len(start))]

 sizeRun = [0 for i in range(len(start))]

 deltaOri = [0 for i in range(len(start))]

 for i in range(len(start)):

 run[i] = (start[i] + end[i]) / 2.0

 deltaTarget[i] = abs(sectorTarget - run[i])

 deltaOri[i] = abs(sectorOri - run[i])

 sizeRun[i] = end[i] - start[i] + 1

33

 maxT = float(max(deltaTarget))

 maxO = float(max(deltaOri))

 maxS = float(max(sizeRun))

 a = 0.2

 b = 0.2

 c = 0.6

 g = [0 for i in range(len(run))]

 for i in range(len(run)):

 deltaTarget[i] = deltaTarget[i] / maxT

 deltaOri[i] = deltaOri[i] / maxO

 sizeRun[i] = 1 - sizeRun[i] / maxS

 g[i] = a * deltaOri[i] + b * deltaTarget[i] + c * sizeRun[i]

 index = indexMin(g)

 targetOri = angularize(run[index])

 count = 0

 while count < 20:

 pose = getPose()

 robotOri = quaternion2Euler(pose)

 deltaOri = targetOri - robotOri

 if deltaOri > pi:

 deltaOri = deltaOri - 2 * pi

 if deltaOri < -pi:

 deltaOri = deltaOri + 2 * pi

 angularSpeed = k * deltaOri

 linearSpeed = 0.8

 response = postSpeed(angularSpeed,linearSpeed)

 count += 1

 sleep(0.2)

34

9. basic.py

from math import sqrt, atan2

def distance(x1, y1, x2, y2):

 d = sqrt(pow(x1 - x2, 2)+pow(y1 - y2, 2))

 return d

def sign(x):

 if x > 0:

 y = 1

 elif x < 0:

 y = -1

 else:

 y = 0

 return y

def quaternion2Euler(array):

 w = array['Pose']['Orientation']['W']

 x = array['Pose']['Orientation']['X']

 y = array['Pose']['Orientation']['Y']

 z = array['Pose']['Orientation']['Z']

 phi = atan2(2*(w*z+x*y),1-2*(pow(y,2)+pow(z,2)))

 return phi

def save(filename, var):

 f = open(filename, 'w')

 f.write(str(var))

 f.close

def size(x):

 row = len(x)

 col = len(x[0])

 return (row, col)

def indexMaxLs(ls, num):

 clone = []

 for i in range(len(ls)):

 clone.append(ls[i])

 indexMax = []

 for i in range(num):

 temp = max(clone)

 indexMax.append(ls.index(temp))

 clone.remove(temp)

35

 return indexMax

def indexMin(ls):

 temp = ls[0]

 index = 0

 for i in range(len(ls)):

 if ls[i] < temp:

 temp = ls[i]

 index = i

 return index

def filter(ls, resolution):

 length = len(ls) / resolution

 temp = []

 if length == 0:

 temp.append(ls[0])

 else:

 for i in range(length):

 temp.append(ls[resolution * i])

return temp

36

10. visualize.m

clc; clear;

close all

load('map.txt')

load('pose.txt')

load('path.txt')

load('pathLength.txt')

load('mapFreq.txt')

row = 200;

col = 200;

timeStep = length(map) / (row * col);

occupied = zeros(row, col);

empty = zeros(row, col);

freq = zeros(row, col);

for i = 1 : row

 for j = 1 : col

 occupied(i, j) = mapFreq(((i - 1) * col + j - 1) * 3 + 1);

 empty(i, j) = mapFreq(((i - 1) * col + j - 1) * 3 + 2);

 freq(i, j) = mapFreq(((i - 1) * col + j) * 3);

 end

end

figure

imagesc(occupied)

figure

imagesc(empty)

figure

imagesc(occupied./freq)

figure

imagesc(empty./freq)

figure

imagesc(freq)

mapProb = zeros(row, col, timeStep);

for i = 1 : timeStep

 for j = 1 : row

 mapProb(j, :, i) = map(((i - 1) * row + j - 1) * col + 1 : ((i - 1) * row

+ j) * col);

 end

end

robotPose = zeros(timeStep, 2);

for i = 1 : timeStep

37

 robotPose(i, :) = pose((i - 1) * 2 + 1 : 2 * i);

end

maxL = max(pathLength);

trajectory = zeros(maxL, 2, timeStep);

k = 1;

for i = 1 : timeStep

 temp = path(k : k - 1 + 2 * pathLength(i));

 k = k + 2 * pathLength(i);

 for j = 1 : pathLength(i)

 trajectory(j, :, i) = temp((j - 1) * 2 + 1 : 2 * j);

 end

end

for i = 1 : timeStep

% figure

 imagesc(-mapProb(:, :, i))

 colormap(gray)

 hold on

 plot(robotPose(i, 2), robotPose(i, 1), 'r*')

 hold on

 plot(trajectory(1 : pathLength(i), 2, i), trajectory(1 : pathLength(i), 1,

i), 'b-', 'LineWidth', 2)

 F(i) = getframe();

end

figure

movie(F, 1, 10)

% movie2avi(F, 'Exploration.avi','compression','None','fps',2);

figure

imagesc(-mapProb(:, :, timeStep))

colormap(gray)

38

11. mapper

#!/bin/bash

Example script for calling mapper. Don't forget to make it executable (chmod +x mapper)

Change the last line (java Mapper ...) to suit your needs

Author: Ola Ringdahl

Inputs:

url specifies the address and port to the machine running MRDS.

x1, y1, x2, y2 give the coordinates of the lower left and upper right corners of the

area the robot should explore and map.

if ["$#" -ne 5]; then

 echo "Usage: ./mapper url x1 y1 x2 y2"

 exit

fi

url="$1"

x1="$2"

y1="$3"

x2="$4"

y2="$5"

python main.py $url $x1 $y1 $x2 $x2

